\qquad
\qquad
\qquad

LT AA2: Study Guide

AA2

Identify the parent function, be able to graph, explain the transformation, and the significance of the locator point (h, k)

1. $y=2(x-5)^{2}+7$
2. $y=|x+6|-3$
3. $y=-(x+9)^{3}-12$
4. $y=\frac{1}{4} \sqrt{x+1}-5$
5. $x=.75(y-2)^{2}+1$
6. $(x-6)^{2}+(y+4)^{2}=25$

Write the equation of the function using the given information (you must show your work)
7. A parabola that has a vertex at $(1,1)$ that goes through the point $(-4,76)$
8. A cubic function that has a locator point at $(-3,5)$ and goes through the point $(-2,4)$
9. An absolute value function with the vertex $(5,-4)$ that goes through the point $(-1,8)$.

Sketch a careful graph of each function
10. $y=(x+3)^{2}-27$
11. $y=\sqrt{x+16}-6$
12. $y=3|x+4|-3$
13. $(x-2)^{2}+(y+4)^{2}=16$

Use completing the square to rewrite the equation in vertex form, then identify the vertex and find the x intercepts.
14. $y=x^{2}-24 x+16$
15. $y=x^{2}-6 x-2$

Find the vertex and describe the transformation
16. $x=(y+1)^{2}-3$
17. $x=(y-12)^{2}+7$
18. Be able to graph a piecewise function

$$
\begin{cases}4 x-2, & x \geq 2 \\ \frac{-1}{3} x+4, & x<2\end{cases}
$$

19. Be able to compare and contrast a parent
function and it's transformed function. For instance how are $y=|x|$ and $y=-2|x+5|-3$ the same and different.
