HOMEWORK for VERIFYING INVERSES with COMPOSITION of FUNCTIONS

Prove that the two equations are inverses of each other by using composition of functions.

1)
$$f(x) = 7x - 10$$

 $g(x) = \frac{x}{7} + \frac{10}{7}$

$$g(f(x)) =$$

$$f(g(x)) =$$

2)
$$f(x) = \frac{2}{3}x + 12$$

 $g(x) = \frac{3x}{2} - 18$

$$g(f(x)) =$$

$$f(g(x)) =$$

3)
$$f(x) = \frac{3(x-5)}{4}$$

 $g(x) = \frac{4x}{3} + 5$

$$g(f(x)) =$$

$$f(g(x)) =$$

4)
$$f(x) = (x+8)^2$$

 $g(x) = \pm \sqrt{x} - 8$

5)
$$f(x) = 3x^2 - 6$$
$$g(x) = \pm \sqrt{\frac{x+6}{3}}$$
$$f(g(x)) = 6$$

$$g(f(x)) =$$

6)
$$f(x) = 5(x+7)^3$$

 $g(x) = \sqrt[3]{\frac{x}{5}} - 7$
 $f(g(x)) =$

$$g(f(x)) =$$

7)
$$f(x) = \sqrt[3]{\frac{-x+1}{2}}$$
$$g(x) = -2x^3 + 1$$
$$f(g(x)) =$$

$$g\big(f(x)\big) =$$

6-45. The function f(x) is represented in the graph at right. Draw a graph of its inverse function. Be sure to state the domain and range for both f(x) and $f^{-1}(x)$.

